Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
NAR Genom Bioinform ; 5(2): lqad038, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2292063

ABSTRACT

Genetic sequencing is subject to many different types of errors, but most analyses treat the resultant sequences as if they are known without error. Next generation sequencing methods rely on significantly larger numbers of reads than previous sequencing methods in exchange for a loss of accuracy in each individual read. Still, the coverage of such machines is imperfect and leaves uncertainty in many of the base calls. In this work, we demonstrate that the uncertainty in sequencing techniques will affect downstream analysis and propose a straightforward method to propagate the uncertainty. Our method (which we have dubbed Sequence Uncertainty Propagation, or SUP) uses a probabilistic matrix representation of individual sequences which incorporates base quality scores as a measure of uncertainty that naturally lead to resampling and replication as a framework for uncertainty propagation. With the matrix representation, resampling possible base calls according to quality scores provides a bootstrap- or prior distribution-like first step towards genetic analysis. Analyses based on these re-sampled sequences will include a more complete evaluation of the error involved in such analyses. We demonstrate our resampling method on SARS-CoV-2 data. The resampling procedures add a linear computational cost to the analyses, but the large impact on the variance in downstream estimates makes it clear that ignoring this uncertainty may lead to overly confident conclusions. We show that SARS-CoV-2 lineage designations via Pangolin are much less certain than the bootstrap support reported by Pangolin would imply and the clock rate estimates for SARS-CoV-2 are much more variable than reported.

2.
Sci Total Environ ; 876: 162800, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-2250309

ABSTRACT

Wastewater surveillance (WWS) is useful to better understand the spreading of coronavirus disease 2019 (COVID-19) in communities, which can help design and implement suitable mitigation measures. The main objective of this study was to develop the Wastewater Viral Load Risk Index (WWVLRI) for three Saskatchewan cities to offer a simple metric to interpret WWS. The index was developed by considering relationships between reproduction number, clinical data, daily per capita concentrations of virus particles in wastewater, and weekly viral load change rate. Trends of daily per capita concentrations of SARS-CoV-2 in wastewater for Saskatoon, Prince Albert, and North Battleford were similar during the pandemic, suggesting that per capita viral load can be useful to quantitatively compare wastewater signals among cities and develop an effective and comprehensible WWVLRI. The effective reproduction number (Rt) and the daily per capita efficiency adjusted viral load thresholds of 85 × 106 and 200 × 106 N2 gene counts (gc)/population day (pd) were determined. These values with rates of change were used to categorize the potential for COVID-19 outbreaks and subsequent declines. The weekly average was considered 'low risk' when the per capita viral load was 85 × 106 N2 gc/pd. A 'medium risk' occurs when the per capita copies were between 85 × 106 and 200 × 106 N2 gc/pd. with a rate of change <100 %. The start of an outbreak is indicated by a 'medium-high' risk classification when the week-over-week rate of change was >100 %, and the absolute magnitude of concentrations of viral particles was >85 × 106 N2 gc/pd. Lastly, a 'high risk' occurs when the viral load exceeds 200 × 106 N2 gc/pd. This methodology provides a valuable resource for decision-makers and health authorities, specifically given the limitation of COVID-19 surveillance based on clinical data.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Cities/epidemiology , Grassland , Wastewater , Wastewater-Based Epidemiological Monitoring , Saskatchewan/epidemiology
3.
CMAJ Open ; 10(4): E981-E987, 2022.
Article in English | MEDLINE | ID: covidwho-2110942

ABSTRACT

BACKGROUND: Accurate and timely testing for SARS-CoV-2 in the pediatric population is crucial to control the COVID-19 pandemic; saliva testing has been proposed as a less invasive alternative to nasopharyngeal swabs. We sought to compare the detection of SARS-CoV-2 using saliva versus nasopharyngeal swab in the pediatric population, and to determine the optimum time of testing for SARS-CoV-2 using saliva. METHODS: We conducted a longitudinal diagnostic study in Ottawa, Canada, from Jan. 19 to Mar. 26, 2021. Children aged 3-17 years were eligible if they exhibited symptoms of COVID-19, had been identified as a high-risk or close contact to someone confirmed positive for SARS-CoV-2 or had travelled outside Canada in the previous 14 days. Participants provided both nasopharyngeal swab and saliva samples. Saliva was collected using a self-collection kit (DNA Genotek, OM-505) or a sponge-based kit (DNA Genotek, ORE-100) if they could not provide a saliva sample into a tube. RESULTS: Among 1580 paired nasopharyngeal and saliva tests, 60 paired samples were positive for SARS-CoV-2. Forty-four (73.3%) were concordant-positive results and 16 (26.6%) were discordant, among which 8 were positive only on nasopharyngeal swab and 8 were positive only on saliva testing. The sensitivity of saliva was 84.6% (95% confidence interval 71.9%-93.1%). INTERPRETATION: Salivary testing for SARS-CoV-2 in the pediatric population is less invasive and shows similar detection of SARS-CoV-2 to nasopharyngeal swabs. It may therefore provide a feasible alternative for diagnosis of SARS-CoV-2 infection in children.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , COVID-19 Testing , Pandemics , COVID-19/diagnosis , COVID-19/epidemiology , Saliva
4.
Sci Rep ; 12(1): 13490, 2022 08 05.
Article in English | MEDLINE | ID: covidwho-2077088

ABSTRACT

The ribonucleic acid (RNA) of the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is detectable in municipal wastewater as infected individuals can shed the virus in their feces. Viral concentration in wastewater can inform the severity of the COVID-19 pandemic but observations can be noisy and sparse and hence hamper the epidemiological interpretation. Motivated by a Canadian nationwide wastewater surveillance data set, unlike previous studies, we propose a novel Bayesian statistical framework based on the theories of functional data analysis to tackle the challenges embedded in the longitudinal wastewater monitoring data. By employing this framework to analyze the large-scale data set from the nationwide wastewater surveillance program covering 15 sampling sites across Canada, we successfully detect the true trends of viral concentration out of noisy and sparsely observed viral concentrations, and accurately forecast the future trajectory of viral concentrations in wastewater. Along with the excellent performance assessment using simulated data, this study shows that the proposed novel framework is a useful statistical tool and has a significant potential in supporting the epidemiological interpretation of noisy viral concentration measurements from wastewater samples in a real-life setting.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , COVID-19/epidemiology , Canada , Humans , Pandemics , RNA, Viral , Wastewater , Wastewater-Based Epidemiological Monitoring
5.
Epidemics ; 39: 100560, 2022 06.
Article in English | MEDLINE | ID: covidwho-1778119

ABSTRACT

The COVID-19 pandemic has stimulated wastewater-based surveillance, allowing public health to track the epidemic by monitoring the concentration of the genetic fingerprints of SARS-CoV-2 shed in wastewater by infected individuals. Wastewater-based surveillance for COVID-19 is still in its infancy. In particular, the quantitative link between clinical cases observed through traditional surveillance and the signals from viral concentrations in wastewater is still developing and hampers interpretation of the data and actionable public-health decisions. We present a modelling framework that includes both SARS-CoV-2 transmission at the population level and the fate of SARS-CoV-2 RNA particles in the sewage system after faecal shedding by infected persons in the population. Using our mechanistic representation of the combined clinical/wastewater system, we perform exploratory simulations to quantify the effect of surveillance effectiveness, public-health interventions and vaccination on the discordance between clinical and wastewater signals. We also apply our model to surveillance data from three Canadian cities to provide wastewater-informed estimates for the actual prevalence, the effective reproduction number and incidence forecasts. We find that wastewater-based surveillance, paired with this model, can complement clinical surveillance by supporting the estimation of key epidemiological metrics and hence better triangulate the state of an epidemic using this alternative data source.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Canada/epidemiology , Cities/epidemiology , Humans , Pandemics , RNA, Viral , Wastewater
6.
Influenza Other Respir Viruses ; 16(2): 190-192, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1505752

ABSTRACT

Stringent public health measures imposed across Canada to control the COVID-19 pandemic have nearly suppressed most seasonal respiratory viruses, with the notable exception of human rhinovirus/enterovirus (hRV/EV). Thanks to this unexpected persistence, we highlight that hRV/EV could serve as a sentinel for levels of contact rate in populations to inform on the efficiency, or the need of, public health measures to control the subsequent COVID-19 epidemic, but also for future epidemics from other seasonal or emerging respiratory pathogens.


Subject(s)
COVID-19 , Enterovirus , Respiratory Tract Infections , Viruses , Humans , Pandemics , Respiratory Tract Infections/epidemiology , Rhinovirus , SARS-CoV-2
7.
Can Commun Dis Rep ; 47(4): 184-194, 2021 May 07.
Article in English | MEDLINE | ID: covidwho-1244371

ABSTRACT

BACKGROUND: Gatherings may contribute significantly to the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For this reason, public health interventions have sought to constrain unrepeated or recurrent gatherings to curb the coronavirus disease 2019 (COVID-19) pandemic. Unfortunately, the range of different types of gatherings hinders specific guidance from setting limiting parameters (e.g. total size, number of cohorts, the extent of physical distancing). METHODS: We used a generic modelling framework, based on fundamental probability principles, to derive simple formulas to assess introduction and transmission risks associated with gatherings, as well as the potential efficiency of some testing strategies to mitigate these risks. RESULTS: Introduction risk can be broadly assessed with the population prevalence and the size of the gathering, while transmission risk at a gathering is mainly driven by the gathering size. For recurrent gatherings, the cohort structure does not have a significant impact on transmission between cohorts. Testing strategies can mitigate risk, but frequency of testing and test performance are factors in finding a balance between detection and false positives. CONCLUSION: The generality of the modelling framework used here helps to disentangle the various factors affecting transmission risk at gatherings and may be useful for public health decision-making.

8.
BMC Public Health ; 21(1): 706, 2021 04 12.
Article in English | MEDLINE | ID: covidwho-1181100

ABSTRACT

BACKGROUND: Patient age is one of the most salient clinical indicators of risk from COVID-19. Age-specific distributions of known SARS-CoV-2 infections and COVID-19-related deaths are available for many regions. Less attention has been given to the age distributions of serious medical interventions administered to COVID-19 patients, which could reveal sources of potential pressure on the healthcare system should SARS-CoV-2 prevalence increase, and could inform mass vaccination strategies. The aim of this study is to quantify the relationship between COVID-19 patient age and serious outcomes of the disease, beyond fatalities alone. METHODS: We analysed 277,555 known SARS-CoV-2 infection records for Ontario, Canada, from 23 January 2020 to 16 February 2021 and estimated the age distributions of hospitalizations, Intensive Care Unit admissions, intubations, and ventilations. We quantified the probability of hospitalization given known SARS-CoV-2 infection, and of survival given COVID-19-related hospitalization. RESULTS: The distribution of hospitalizations peaks with a wide plateau covering ages 60-90, whereas deaths are concentrated in ages 80+. The estimated probability of hospitalization given known infection reaches a maximum of 27.8% at age 80 (95% CI 26.0%-29.7%). The probability of survival given hospitalization is nearly 100% for adults younger than 40, but declines substantially after this age; for example, a hospitalized 54-year-old patient has a 91.7% chance of surviving COVID-19 (95% CI 88.3%-94.4%). CONCLUSIONS: Our study demonstrates a significant need for hospitalization in middle-aged individuals and young seniors. This need is not captured by the distribution of deaths, which is heavily concentrated in very old ages. The probability of survival given hospitalization for COVID-19 is lower than is generally perceived for patients over 40. If acute care capacity is exceeded due to an increase in COVID-19 prevalence, the distribution of deaths could expand toward younger ages. These results suggest that vaccine programs should aim to prevent infection not only in old seniors, but also in young seniors and middle-aged individuals, to protect them from serious illness and to limit stress on the healthcare system.


Subject(s)
COVID-19 , Hospitalization , Adult , Age Distribution , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/mortality , COVID-19/therapy , Delivery of Health Care/organization & administration , Hospitalization/statistics & numerical data , Humans , Middle Aged , Ontario/epidemiology
9.
CMAJ ; 192(46): E1482-E1486, 2020 11 16.
Article in French | MEDLINE | ID: covidwho-1040769

ABSTRACT

CONTEXTE: Les estimations du taux de létalité de la maladie à coronavirus 2019 (COVID-19) varient grandement selon les populations. L'objectif était d'estimer et de comparer ce taux pour le Canada et les États-Unis en tenant compte de 2 sources de biais potentiel du taux brut. MÉTHODES: Pour ce faire, nous sommes partis du nombre quotidien de cas confirmés et de décès au Canada et aux États-Unis pour la période du 31 janvier au 22 avril 2020. Nous y avons appliqué une méthode statistique qui réduit au minimum les biais du taux de létalité brut de 2 façons : en intégrant la durée de survie, soit le délai entre le début de la maladie et le décès, et en considérant que moins de 50 % des cas de COVID-19 sont confirmés (intervalle de confiance à 95 % 10 %­50 %). RÉSULTATS: À partir du nombre de cas confirmés au Canada, nous avons évalué le taux brut en date en 22 avril 2020 à 4,9 %, et le taux ajusté à 5,5 % (intervalle de crédibilité [ICr] 4,9 %­6,4 %). En appliquant divers taux de cas confirmés inférieurs à 50 %, nous avons obtenu un taux ajusté de 1,6 % (ICr 0,7 %­3,1 %). Pour les États-Unis, le taux brut en date du 20 avril 2020 était de 5,4 %, et le taux ajusté, de 6,1 % (ICr 5,4 %­6,9 %). Combiné à des taux de cas confirmés inférieurs à 50 %, le taux ajusté est passé à 1,78 % (ICr 0,8 %­3,6 %). INTERPRÉTATION: Nos estimations montrent que si le taux de cas confirmés est de moins de 50 %, le taux de létalité ajusté de la COVID-19 est vraisemblablement inférieur à 2 % au Canada. Aux États-Unis, les estimations sont plus élevées, mais le taux ajusté reste sous la barre des 2 %. Si le taux de cas confirmés était connu, nous pourrions mieux évaluer la virulence du coronavirus du syndrome respiratoire aigu sévère 2 et la charge associée.

10.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: covidwho-998067

ABSTRACT

The reproduction number R and the growth rate r are critical epidemiological quantities. They are linked by generation intervals, the time between infection and onward transmission. Because generation intervals are difficult to observe, epidemiologists often substitute serial intervals, the time between symptom onset in successive links in a transmission chain. Recent studies suggest that such substitution biases estimates of R based on r. Here we explore how these intervals vary over the course of an epidemic, and the implications for R estimation. Forward-looking serial intervals, measuring time forward from symptom onset of an infector, correctly describe the renewal process of symptomatic cases and therefore reliably link R with r. In contrast, backward-looking intervals, which measure time backward, and intrinsic intervals, which neglect population-level dynamics, give incorrect R estimates. Forward-looking intervals are affected both by epidemic dynamics and by censoring, changing in complex ways over the course of an epidemic. We present a heuristic method for addressing biases that arise from neglecting changes in serial intervals. We apply the method to early (21 January to February 8, 2020) serial interval-based estimates of R for the COVID-19 outbreak in China outside Hubei province; using improperly defined serial intervals in this context biases estimates of initial R by up to a factor of 2.6. This study demonstrates the importance of early contact tracing efforts and provides a framework for reassessing generation intervals, serial intervals, and R estimates for COVID-19.


Subject(s)
Basic Reproduction Number , COVID-19/epidemiology , Models, Theoretical , China/epidemiology , Humans
11.
J R Soc Interface ; 17(168): 20200144, 2020 07.
Article in English | MEDLINE | ID: covidwho-665024

ABSTRACT

A novel coronavirus (SARS-CoV-2) emerged as a global threat in December 2019. As the epidemic progresses, disease modellers continue to focus on estimating the basic reproductive number [Formula: see text]-the average number of secondary cases caused by a primary case in an otherwise susceptible population. The modelling approaches and resulting estimates of [Formula: see text] during the beginning of the outbreak vary widely, despite relying on similar data sources. Here, we present a statistical framework for comparing and combining different estimates of [Formula: see text] across a wide range of models by decomposing the basic reproductive number into three key quantities: the exponential growth rate, the mean generation interval and the generation-interval dispersion. We apply our framework to early estimates of [Formula: see text] for the SARS-CoV-2 outbreak, showing that many [Formula: see text] estimates are overly confident. Our results emphasize the importance of propagating uncertainties in all components of [Formula: see text], including the shape of the generation-interval distribution, in efforts to estimate [Formula: see text] at the outset of an epidemic.


Subject(s)
Basic Reproduction Number , Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Outbreaks , Models, Biological , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Basic Reproduction Number/statistics & numerical data , Bayes Theorem , COVID-19 , China/epidemiology , Disease Outbreaks/statistics & numerical data , Epidemics/statistics & numerical data , Humans , Markov Chains , Monte Carlo Method , Pandemics , Probability , SARS-CoV-2 , Uncertainty
12.
CMAJ ; 192(25): E666-E670, 2020 06 22.
Article in English | MEDLINE | ID: covidwho-343763

ABSTRACT

BACKGROUND: Estimates of the case-fatality rate (CFR) associated with coronavirus disease 2019 (COVID-19) vary widely in different population settings. We sought to estimate and compare the COVID-19 CFR in Canada and the United States while adjusting for 2 potential biases in crude CFR. METHODS: We used the daily incidence of confirmed COVID-19 cases and deaths in Canada and the US from Jan. 31 to Apr. 22, 2020. We applied a statistical method to minimize bias in the crude CFR by accounting for the survival interval as the lag time between disease onset and death, while considering reporting rates of COVID-19 cases less than 50% (95% confidence interval 10%-50%). RESULTS: Using data for confirmed cases in Canada, we estimated the crude CFR to be 4.9% on Apr. 22, 2020, and the adjusted CFR to be 5.5% (credible interval [CrI] 4.9%-6.4%). After we accounted for various reporting rates less than 50%, the adjusted CFR was estimated at 1.6% (CrI 0.7%-3.1%). The US crude CFR was estimated to be 5.4% on Apr. 20, 2020, with an adjusted CFR of 6.1% (CrI 5.4%-6.9%). With reporting rates of less than 50%, the adjusted CFR for the US was 1.78 (CrI 0.8%-3.6%). INTERPRETATION: Our estimates suggest that, if the reporting rate is less than 50%, the adjusted CFR of COVID-19 in Canada is likely to be less than 2%. The CFR estimates for the US were higher than those for Canada, but the adjusted CFR still remained below 2%. Quantification of case reporting can provide a more accurate measure of the virulence and disease burden of severe acute respiratory syndrome coronavirus 2.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/mortality , Disease Outbreaks/statistics & numerical data , Pandemics/statistics & numerical data , Pneumonia, Viral/mortality , COVID-19 , Canada/epidemiology , Humans , Incidence , SARS-CoV-2 , Time Factors , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL